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Abstract

Higher-order conformal perturbation theory is studied for theories with and
without boundaries. We identify systematically the universal quantities in
the beta function equations, and we give explicit formulae for the universal
coefficients at next-to-leading order in terms of integrated correlation functions.
As an example, we analyse the radius dependence of the conformal dimension
of some boundary operators for the case of a single Neumann brane on a circle,
and for an intersecting brane configuration on a torus, reproducing in both cases
the expected geometrical answer.

PACS numbers: 11.10−z, 11.25−w

1. Introduction

Perturbations of conformal field theories by relevant operators have been intensively studied
starting with the work of Zamolodchikov [1, 2] on integrable perturbations of conformal field
theories. Numerous examples have been considered, but there are also a number of structural
results, in particular the c-theorem of Zamolodchikov [3] that states that the central charge c
cannot increase along renormalization group flows, as well as the analogous g-theorem [4]
for the boundary entropy [5]. Perturbations of conformal field theories also play an important
role in string theory, for example, for time-dependent backgrounds; see, e.g., [6, 7].

In the context of string theory also marginal perturbations are of significance. Most
string theories of interest possess moduli, i.e. free parameters such as the size and shape of
the background or the position of some D-brane, and these correspond to marginal operators
in the two-dimensional world-sheet theory. Exact conformal field theory solutions are often
only available at special points (in particular, the rational points) in moduli space, and it is
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important to learn to control the theory away from these special points, i.e. after perturbations
by marginal operators.

Usually one thinks of the moduli as corresponding to exactly marginal operators, and
then the renormalization group analysis is, by definition, trivial. However, in the context
of bulk and boundary perturbations, the situation can be more subtle. In particular, exactly
marginal bulk operators (describing moduli of the closed string background) can cease to be
exactly marginal in the presence of a boundary. If this is the case, they induce a non-trivial
renormalization group flow on the boundary [8].

In the analysis of perturbations by relevant operators, a first-order analysis is usually
sufficient (see, e.g., [9, 10]). However, in the context of marginal perturbations, it is often
necessary to go to higher order in perturbation theory. The simplest example of such a situation
is a single Neumann brane on a circle, for which the conformal dimension of the momentum
eigenstates depends on the radius modulus. From the point of view of the world-sheet, the
change in conformal dimension for this boundary operator does not arise at first order, but
only appears at next-to-leading order in perturbation theory.

Higher-order conformal perturbation theory also plays a role in proofs of integrability of
particular bulk and/or boundary perturbations [2, 11, 12]. Conformal perturbation theory at
higher orders was studied for particular models in [13–16]; general aspects of the pure bulk
case were also discussed in [17, 18].

In this paper we make an attempt at a systematic analysis of conformal perturbation
theory beyond the leading order. We begin by analysing which RG coefficients are scheme
independent (or universal) and thus can have a physical interpretation. (In particular, we
show that this is the case for the coefficient describing the change in conformal dimension
of the momentum fields on the Neumann brane.) We then outline a specific scheme—the
position space minimal subtraction scheme—in which higher-order RG coefficients can be
calculated. This allows us to prove that the combined bulk–boundary perturbation problem is
renormalizable at the quadratic order. While the minimal subtraction scheme is conceptually
clean, explicit calculations of the RG coefficients are often rather cumbersome. We therefore
also consider another, Wilsonian-type scheme, to which we refer to as the ‘OPE scheme’
since the first non-trivial terms in the beta functions are given by OPE coefficients. This
scheme has some conceptual shortcomings at higher orders but is computationally somewhat
simpler. For the universal coefficients we are interested in, the result is independent of which
of the two schemes we use (as we also verify explicitly). We can therefore determine the
coefficients of interest (in particular, the formula for the shift in conformal dimension for the
momentum fields on the Neumann brane) in the Wilsonian approach. In the resulting formulae
the universal quantities are expressed as integrals over certain correlation functions. As an
illustration we also apply the formulae to an intersecting brane model on a torus, and again
reproduce the geometric result.

The paper is organized as follows. In section 2, we discuss which RG coefficients
in the boundary beta function are universal in the presence of marginal bulk perturbations
(section 2.1). We then introduce the minimal subtraction scheme, both for pure boundary
perturbations (section 2.2.1) as well as for the combined bulk–boundary problem for which we
prove renormalizability at the quadratic order (section 2.2.2). We also introduce the Wilsonian
scheme and discuss its advantages and shortcomings (section 2.3). Finally, we explain how
the discussion can be generalized to include boundary changing operators (section 2.4). In
section 3 these ideas are applied to two examples, the single Neumann brane on a
circle (section 3.1) as well as a configuration of two intersecting D1-branes on a 2-torus
(section 3.2). Finally, we discuss in section 4 how our techniques for the calculation of
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higher-order RG coefficients can also be applied to pure bulk or pure boundary perturbation
theory.

2. Bulk–boundary perturbations of BCFTs

Let us start with a general discussion of the effect of perturbations by marginal bulk operators
on boundary degrees of freedom. Generically such a deformation will induce a renormalization
group (RG) flow on the space of boundary conditions [8]. Under a certain condition, to be
formulated precisely below, the induced boundary deformation is however scale independent
to the first order in the bulk deformation parameter. In this case, one can study how the set
of boundary scaling dimensions changes with the bulk deformation. We will demonstrate
that (despite no occurrence of RG flows) the RG technique is very useful in addressing this
question. In particular we will derive, using the RG methods, general expressions for a
first-order change in dimensions of boundary operators along a bulk deformation.

2.1. Universal terms in marginal bulk perturbations

Before we give a detailed discussion we need to introduce some notation. Consider a boundary
conformal field theory (BCFT) defined on the upper half plane H

+ = {(x, y)|y � 0} with
complex coordinate z = x + iy. Let φk(z, z̄) be bulk primary fields with conformal weights
(hk, hk) so that their scaling dimensions are �k = 2hk . For a single (fundamental) conformal
boundary condition we denote the boundary primaries by ψp(x) and their scaling dimensions
by hp. Later we will generalize our discussion to superpositions of conformal boundary
conditions. We will assume that the two-point functions are normalized as

〈φi(z, z̄)φj (w, w̄)〉 = δij

|z − w|2�i
, 〈ψp(x)ψq(y)〉 = δpq

|z − w|2hp
. (2.1)

In particular, this means that we assume all fields to be self-conjugate; this is obviously not a
real restriction, and our analysis can easily be generalized. The operator product expansion
(OPE) for pairs of bulk and boundary operators has the form

φi(z, z̄)φj (w, w̄) =
∑

k

Cij
k|z − w|�k−�i−�j φk(w, w̄) + · · · , (2.2)

ψp(x)ψq(y) =
∑

r

Dpq
r(y − x)hr−hp−hq ψr(y) + · · · (y > x). (2.3)

Finally, when a bulk operator approaches the boundary it can be expanded using the bulk-to-
boundary OPE

φk(x + iy, x − iy) =
∑

p

Bk
p(2y)hp−�kψp + · · · . (2.4)

With these preparations, let us now consider a perturbation of the given BCFT generated
by the Euclidean action perturbation:

δS =
∑

k

l�k−2λk

∫∫
dx dy φk(x, y) +

∑
p

lhp−1μp

∫
dx ψp(x). (2.5)

Here λk, μp are the dimensionless coupling constants of the respective operators, and l is
a renormalization distance scale. Up to second order in the coupling constants, the beta
functions have the following general form:
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βk = ykλ
k +

∑
ij

Ck
ij λ

iλj + · · · (2.6)

βp = ypμp +
∑

i

Bp

i λi +
∑
qr

Dp
qrμ

qμr +
∑
iq

Ep

iqλ
iμq + · · · . (2.7)

Here, yk = 2 − �k and yq = 1 − hq are the bulk and boundary anomalous dimensions,
respectively. The omitted terms stand for higher orders in the coupling constants. A general
property of any local RG scheme is that the bulk beta functions are independent of the boundary
couplings.

It has been known for quite some time [19] (see also [20]) that in a particular
renormalization scheme the coefficients Ck

ij for bulk theories are given by Ck
ij = πCij

k ,
where Cij

k are the bulk OPE coefficients from (2.2). The same scheme, to be discussed in
more detail in section 2.3, can easily be adapted for theories on the half plane. The coefficients
Dp

qr coincide then with the boundary structure constants Dqr
p (see, e.g., [21]), and for the

coefficients Bp

i we have Bp

i = 1
2Bi

p, where Bi
p are the bulk-to-boundary OPE coefficients

from (2.4); see [8].
Consider now the case where we perturb the BCFT by a single bulk field φ(x, y) with

a coupling constant λ. Furthermore, we want to assume that the bulk beta function βφ(λ)

vanishes. In this case, even in the absence of an initial boundary perturbation μ
p

bare = 0,
a boundary renormalization group flow can be triggered by the terms Bp

φλ in the boundary
beta function. Such boundary terms, however, are in general not universal. For example, if
the induced boundary fields are all relevant, i.e. yp > 0, then the corresponding terms in the
boundary beta function can be removed by a coupling constant redefinition

μp �→ μ̃p = μp +
Bp

φ

yp

λ. (2.8)

The above coupling constant redefinition looks peculiar in that μ̃p is not proportional to μp.
It has, however, a simple meaning. Let Z = 〈eδS〉 be the renormalized partition function4 of
the perturbed theory (2.5). We have(

∂ ln Z

∂λ

)
{μ̃p}

−
(

∂ ln Z

∂λ

)
{μp}

= −
∑

p

Bp

φ

yp

(
∂ ln Z

∂μ̃p

)
λ

= −
∑

p

Bp

φ

yp

(
∂ ln Z

∂μp

)
λ

, (2.9)

where the partial derivatives on the left-hand side are taken with the boundary constants μp

or μ̃p held fixed. The identities (2.9) mean that, after the redefinition (2.8), the bulk coupling
constant λ couples to a re-defined field

φ̃(x, y) = φ(x, y) −
∑

p

Bp

φ

yp

ψp(x)δ(y). (2.10)

Part of the renormalization procedure amounts to defining the operator coupling to λ on the
half plane so that the correlation functions involving that operator are distributions (and thus
integrable in any bounded region on the half plane). In the interior of the half plane the resulting
operator must coincide with the bulk operator φ(x, y), but in general extra subtractions may be
required at the boundary. The redefinition (2.10) stemming from the change of scheme (2.8)
reflects the natural ambiguity in defining such a fully subtracted operator extending φ(x, y).

4 Here we are talking about the partition function on a disc. The passage from the half plane to the disc is
straightforward because the bulk theory is conformal.
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Suppose now that all terms linear in λ can be removed in this manner. Then the resulting
boundary beta functions have the form

β̃p =
∑

q

Dp
q (λ)μ̃q + O(μ̃2), (2.11)

where

Dp
q (λ) = ypδp

q + λẼp

φq + O(λ2) with Ẽp

φq = Ep

φq − 2
∑

r

Dp

(qr)

Br
φ

yr

(2.12)

and Dp

(qr) = 1
2

(
Dp

qr + Dp
rq

)
. Now that the boundary beta functions are all proportional to

the boundary coupling constants we can treat the boundary perturbations (at least those of the
relevant operators) infinitesimally to read off the dimensions of the boundary operators in the
deformed theory. More specifically, we claim that the eigenvalues of the matrix D

p
q (λ) are to

be identified with y = 1 − h, where h is the scaling dimension of the boundary operator in the
deformed theory, and the corresponding boundary primaries are the eigenvectors of D

p
q (λ).

To leading order in λ, the matrix D
p
q (λ) can be diagonalized by the transformation

μ̃p �→
∑

q

(
δp
q + λf p

q

)
μ̃q, where f p

q =
⎧⎨
⎩

Ẽp

φq

yp − yq

for p �= q

0 for p = q.

(2.13)

The corresponding primary fields are5

ψp[λ] = ψp − λ
∑
q �=p

Ẽq

φp

yq − yp

ψq, (2.14)

and their anomalous dimensions are

yp[λ] = yp + λẼp

φp. (2.15)

We further claim that the quantity specifying the dimension shifts

Ẽp

φp = Ep

φp − 2
∑

r

Dp

(pr)

Br
φ

yr

(2.16)

is scheme independent. To see this we consider a coupling constant redefinition of the form

μp �→ μp + λbp +
∑
qr

dp
qrμ

qμr +
∑

q

ep
q λμq + · · · . (2.17)

Under this redefinition the coefficients in the beta functions (2.7) change as

Bp

φ �→ Bp

φ − bpyp,

Dp
rs �→ Dp

rs + d
p

(rs)(yr + ys − yp),

Ep

φr �→ Ep

φr − 2
∑

s

Dp
rsb

s − 2
∑

s

d
p

(rs)b
s(yr + ys − yp) + 2

∑
s

d
p

(rs)B
s
φ + ep

r (yr − yp).

(2.18)

It is straightforward to check that under the transformations (2.18) the quantity (2.16) is indeed
invariant.

5 The fields ψp[λ] are defined up to adding a multiple of λψp .
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2.2. Computation in a minimal subtraction scheme

In the following we want to explain in detail how these coefficients—in particular (2.16)—
can be calculated explicitly. We shall first study this question in a minimal subtraction
scheme. In order to make sense of the formal perturbation series we shall use a point-splitting
regularization. In particular, we require that any two perturbing bulk or boundary fields do not
approach each other closer than a cut-off ε, and that the perturbing bulk fields only approach
the boundary up to a distance ε/2. Before specializing to the bulk and boundary situation
discussed in the previous section, let us first discuss some generalities of renormalization. For
brevity we consider only boundary perturbations but that are inessential for the points we want
to make.

2.2.1. Generalities of minimal subtraction schemes for boundary perturbations. Let us
consider a perturbed BCFT action

S = SBCFT +
∑

p

μ
p

B

∫
dx ψp(x), (2.19)

where μ
p

B are the bare coupling constants. Let l be an infrared distance scale at which we wish
to renormalize the theory. In terms of the renormalized dimensionless coupling constants μp,
the same Lagrangian (2.19) can be expressed as

S = SBCFT +
∑

p

l−ypμp

∫
dx ψp(x) + Sct, (2.20)

where yp are anomalous dimensions of the fields ψp(x), and Sct is a counterterm action.
Perturbation theory generates integrals of the form∫

· · ·
∫

dx1 · · · dxn ψp1(x1)ψp2(x2) · · · ψpn
(xn)

n∏
i<j

θ(|xi − xj | − ε)θ(L − |xi − xj |),

(2.21)

where we have also introduced an infrared regulator L. The above expression is to be understood
in the operator sense, i.e. inside a correlator with arbitrary other insertions. The product of
fields in (2.21) can be expanded in terms of a complete set of local operators �A as

ψp1(x1)ψp2(x2) . . . ψpn
(xn) =

∑
A

CA
p1,...,pn

(x1, . . . , xn−1)�A(xn), (2.22)

where we have arbitrarily chosen the point of insertion on the right-hand side to be xn. If
the OPEs of the conformal families of the primaries ψp close on themselves, we can take for
�A the fields ψp and their conformal descendants. In conformal field theory the expansion
(2.22) always converges [22] unlike in massive QFTs for which the OPE may be merely an
asymptotic expansion. Substituting (2.22) into (2.21) we obtain expressions of the form∑

A

CA
p1,...,pn

(ε, L)

∫
dx �A(x), (2.23)

where

CA
p1,...,pn

(ε, L) =
∫

· · ·
∫

dx1 · · · dxn−1C
A
p1,...,pn

(x1, . . . , xn−1)

×
n∏

i<j

θ(|xi − xj | − ε)θ(L − |xi − xj |). (2.24)
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The integrals (2.24) are finite because of the cut-offs. In the limit ε → 0, the coefficients
CA

p1,...,pn
(ε, L) diverge with the divergences coming from the regions of integration in which

two or more insertion points x1, . . . , xn collide. In fact, if k operators ψp1 , . . . , ψpk
come close

together (with the other insertions bounded away from the point of coincidence) to produce
an operator �S , the leading divergence has the form

Cεyp1 +···+ypk
−yS LyS+ypk+1 +···+ypn −yA, (2.25)

where C is some numerical constant. Here we have assumed that the resonance condition,

yp1 + · · · + ypk
− yS = 0, (2.26)

does not hold; otherwise the corresponding divergence is logarithmic. The above reasoning
follows essentially from dimensional counting, as well as from the locality of the OPE, ensuring
the independence of the expansion (2.22) from L. If we only perturb by marginal or relevant
fields, ypj

� 0, then divergences can only occur if also �S is relevant, i.e. yS > 0. Assuming
that the OPE is closed, �S is then one of the perturbing relevant or marginal primary fields
ψp. In the ‘minimal subtraction scheme’ we are using here, we only introduce counterterms
for actually divergent contributions; the above reasoning then implies that the scheme closes
on itself.

The divergences arising when k operators come together first emerge at order n = k

in perturbation theory. One expects that they can be cancelled by local (L-independent)
counterterms. These counterterms then also cancel the non-local subdivergences (2.25) that
appear at order m > k in perturbation theory. Thus we only need to deal with the case
when n = k, in which case �S and �A must have a non-trivial two-point function, and
hence yS = yA. Then the coefficient (2.25) is independent of L, and hence converges when
L → ∞. Note that the lower-order counterterms may also contribute to the k = n divergence
when the counterterm insertion from the order l < n comes close together with n − l fields
ψpi

. The same dimensional reasoning however tells us that the final coefficient must again be
independent of L, and the remaining divergence can be cancelled by a local counterterm.

The above discussion should however not be taken to be a recursive proof of
renormalizability of conformal perturbation theory. One problem that needs to be tackled
is the classical problem of overlapping divergences; in the case at hand this occurs when k
points come together with a subset of l < k points coming together much faster than the
remaining ones. The associativity of the OPE in conformal field theory should be the key
property ensuring the consistency in dealing with overlapping divergences, but we have not
attempted to work this out in detail. However, we will see in the concrete examples of the
next subsections how the above discussion can be made more rigorous. In particular, we will
prove the renormalizability of conformal perturbation theory at the next-to-leading order using
analytic properties of conformal blocks.

In order to illustrate these ideas, let us now consider an integral that emerges at second
order in perturbation theory,
1

2!

∑
p,q

l−yp−yq μpμq

∫
dx1

∫
dx2 ψp(x1)ψq(x2)θ(|x1 − x2| − ε)θ(L − |x1 − x2|). (2.27)

The product of the two boundary fields can be expanded via the OPE (2.3). Performing one
of the integrals, we see that we get ultraviolet divergences of the form (in the limit L → ∞)

S
(2)
div = −1

2

∑
p,q,r

Dpq
r

yp + yq − yr

(ε

l

)yp+yq−yr

l−yr μpμq

∫
dx ψr(x), (2.28)

where the summation runs only over those indices p, q, r for which yp + yq − yr < 0. In
particular, yr > 0, and thus only relevant primary fields ψr contribute. As before, we have

7
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also assumed here that there are ‘no resonances’, i.e. that none of the expressions yp + yq − yr

vanishes. Then only power divergences occur at this order.
The above divergences can be cancelled by adding a minimal action counterterm

S
(2)
ct = −S

(2)
div . Equating the two expressions (2.19) and (2.20) we obtain up to second

order in the coupling constants

μr
B = l−yr

⎡
⎣μr +

1

2

∑
p,q∈I

(2)
r

Dpq
r

yp + yq − yr

(ε

l

)yp+yq−yr

l−yr μpμq

⎤
⎦ , (2.29)

where I (2)
r is the set of pairs of indices (p, q) for which yp + yq − yr < 0. Differentiating both

sides of (2.29) with respect to l with fixed μr
B , we obtain

l
dμr

dl
= βr(μ) = yrμ

r . (2.30)

Thus the beta functions are linear in μ. It is easy to see that this property continues to hold
also at higher order in perturbation theory, as long as the divergences are power like.

On the other hand, if we have a non-trivial resonance at lowest order, i.e. if yr = yp + yq ,
then formula (2.28) takes the form (we are assuming for simplicity that there are no other
divergences at this order)

S
(2)
div = −1

2
Dpq

r ln(ε/ l)l−yr μqμp

∫
dx ψr(x), (2.31)

where we cut off the divergent integral in the infrared region at the renormalization scale l.
Introducing a counterterm S

(2)
ct = −S

(2)
div we then obtain a beta function for the coupling μr :

βr = yrμ
r + Dpq

rμpμq. (2.32)

More generally, in the minimal subtraction scheme at hand, the nonlinear terms in the beta
functions all come from resonances. However, in general not all resonant terms are universal.

2.2.2. Minimal subtraction scheme for bulk–boundary perturbations. After this interlude we
now return to the case of interest, namely the description of the minimal subtraction scheme
for bulk–boundary perturbations. In fact, the above discussion generalizes in a straightforward
manner to include an additional perturbation by a bulk field. For simplicity of presentation,
we shall assume that the bulk field φ(z, z̄) is a spinless relevant or marginal primary field of
scaling dimension � = 2 − yφ with yφ � 0. As we shall explain below, the bulk–boundary
perturbation at the next-to-leading order in perturbation theory is then renormalizable. We
will specialize to the situation where the bulk field is marginal (yφ = 0) later.

At the linear order in the bulk coupling λ the divergences in perturbation theory only
arise from singularities as the bulk field approaches the boundary. These are described by the
bulk-to-boundary OPE. If there are no boundary fields for which hp = � − 1 we have power
divergences of the form (2.4)

S
(1)
div = −λ

∑
p∈I (1)

Bφ
p

2(yφ − yp)

(ε

l

)yφ−yp

l−yp

∫
dx ψp(x), (2.33)

where

I (1) = {p|yp > yφ}. (2.34)

In the minimal subtraction scheme the counterterm is then simply S
(1)
ct = −S

(1)
div . If there is a

boundary field for which Bφ
p �= 0 and the resonance condition yp = yφ is satisfied, we have

8
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a logarithmic divergence which results in a universal term linear in λ in the boundary beta
function [8],

βp = ypμp + λ
Bφ

p

2
+ · · · . (2.35)

In the case when the bulk perturbation is marginal the resonance condition requires that the
boundary field is also marginal.

We shall, in the following, always assume that the resonance condition is not satisfied, i.e.
that yp �= yφ ; this is, for example, true in the context of section 2.1 where yφ = 0 and yp > 0.
Then the counterterm is given by S

(1)
ct = −S

(1)
div . At the next order in perturbation theory we

encounter the integral

∑
q

λμql−yq − yφ

∫
dx ′

[∫∫
dx dy θ(y − ε/2)θ(R2 − (x − x ′)2 − y2)φ(z, z̄)ψq(x

′)
]

, (2.36)

where z = x + iy, and R is an infrared regulator. The quantity in the square brackets in (2.36)
can be expanded in local boundary fields as in (2.22) and (2.23); the coefficients of these
fields can be expressed in terms of certain integrals (see below). By the same arguments as
above, only coefficients of (primary) relevant fields can be divergent as we send ε → 0. More
precisely, the coefficient with which the primary field ψp will appear in (2.36) equals

Ip
q =

∫∫
dx dy θ(y − ε/2)θ(R2 − (x − x ′)2 − y2)〈φ(z, z̄)ψq(0)ψp(∞)〉. (2.37)

Using the Möbius symmetry, the correlation function appearing in this formula can be written
as

〈φ(z, z̄)ψq(0)ψp(∞)〉 = |z|yq−yp+yφ−2ηδ+yφ−2(1 − η)(2−yφ−δ)/2Y (η), (2.38)

where

η = 1 − z̄

z
, δ = 1

3
(4 − yp − yq − yφ) = 1

3
(hp + hq + �), (2.39)

and

Y (η) =
{∑

A Bφ
ADqA

p ei π
2 (yA−yφ+1)FA

φφ̄qp
(η) (Re z > 0),∑

A Bφ
ADAq

p ei π
2 (yφ−yA−1)FA

φφ̄qp
(η) (Re z < 0).

(2.40)

Here the index A runs over all conformal primaries whose conformal families appear in the
intermediate channel. The conformal blocks FA

φφ̄qp
(η) have a branch cut along the real η-axis

from −∞ to 1 and are normalized so that FA(η) ∼ ηhA−δ with coefficient 1 as η → 0. The
conformal blocks entering the function Y (η) are defined on opposite sides of the branch cut
for Re z > 0 and Re z < 0. The analyticity in z implies that the values of Y (η) in the lower
half η-plane are obtained by the analytic continuation in a clockwise direction from the upper
half plane [23]. Passing to polar coordinates z = r eiϑ and using (2.38) we can rewrite (2.37)
as

Ip
q =

∫ π−ϑ∗

ϑ∗
dϑ

∫ R

r∗(η)

dr ryq−yp+yφ−1ηδ+yφ−2(1 − η)(2−yφ−δ)/2Y (η), (2.41)

where

ϑ∗ = arcsin
( ε

2R

)
, r2

∗ (η) = ε2(η − 1)

η2
. (2.42)

9
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Since η = 1 − e−2iϑ depends only on ϑ we can perform the integral over r. In the remaining
integral it is convenient to change the integration variable ϑ to η. Altogether we then obtain

Ip
q = i

2ζpq

∫
C(ε/R)

dη

[
εζpq

(
η − 1

η2

)ζpq/2

− Rζpq

]
ηδ+yφ−2(1 − η)−(yφ+δ)/2Y (η), (2.43)

where

ζpq = yq − yp + yφ, (2.44)

and the contour of η-integration is a segment of the circle of radius 1 centred at η = 1 and
oriented clockwise

C(ε/R) = {η = 1 − e−2iϑ , ϑ∗ � ϑ � π − ϑ∗}. (2.45)

Obviously, this expression only makes sense if ζpq �= 0. In the resonance case (i.e. for ζpq = 0)
we have instead(

Ip
q

)
res = i

2

∫
C(ε/R)

dη ln

(
ε

R|η|
)

ηδ+yφ−2(1 − η)−(yφ+δ)/2Y (η). (2.46)

The divergences of I
p
q and

(
I

p
q

)
res in the limit ε → 0 can now be analysed using well-

known properties of conformal blocks. There are two kinds of divergences that will be
important to us: those that come from the region of integration η ∼ ε/R → 0 where the bulk
operator approaches the boundary far away from the point of insertion of ψq , and those that
arise when the bulk field approaches the boundary in the vicinity of the boundary field ψq . As
we have argued before (and as will become clear below) the former divergences are cancelled
by the contribution from the lower-order counterterm S

(1)
ct , while the remaining divergences

have the power εζpq . To see this, we use the asymptotics—see (2.40)

for ϑ → 0 Y (η) ∼
∑
A

Bφ
ADqA

p ei π
2 (yA−yφ+1)η1−yA−δ + · · · ,

for ϑ → π Y(η) ∼
∑
A

Bφ
ADAq

p ei π
2 (yφ−yA−1)η1−yA−δ + · · · ,

(2.47)

in (2.43) and (2.46), and then perform the η-integrals in the vicinity of η = 0, i.e. from η = i ε
R

up to some intermediate cut-off ξ . This leads to

Ip
q = Cp

q εζpq + f p
q Rζpq −

∑
A

[
Bφ

A
(
DqA

p + DAq
p
)

2(yφ − yA)(yA + yq − yp)
εyφ−yARyA+yq−yp + O(εyφ−yA+1)

]
,

(2.48)

(
Ip
q

)
res = (

Cp
q

)
res ln(ε/ l) +

(
f p

q

)
res +

∑
A

[
Bφ

A(DqA
p + DAq

p)

2(yφ − yA)2

( ε

R

)yφ−yA

+ O(εyφ−yA+1)

]
,

(2.49)

where C
p
q ,

(
C

p
q

)
res, f

p
q and

(
f

p
q

)
res are some constants independent of ε and R (that come from

the evaluation of the primitive function at ξ , as well as from the remaining part of the integral).
Since we are only interested in divergent contributions in ε, we may restrict the fields A to
be relevant primary fields in A ∈ I (1). Furthermore, we can ignore all the subleading terms
O(εyφ−yA+1) since they vanish in the limit ε → 0.6

6 This is obvious for yA < 1. In a unitary BCFT, yA = 1 corresponds always to the identity operator � which does
not have a descendant operator at level one since L−1� = 0.

10
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Now we want to show that the divergent terms in the sum in (2.48) are precisely cancelled
by the lower-order counterterm S

(1)
ct given in (2.33). At order λμq—recall that μq is the

coupling constant corresponding to ψq—the counterterm leads to the contribution

λμql−yq−yφ

∑
s∈I (1)

εyφ−ys
Bφ

s

2(yφ − ys)

∫∫
dx dx ′ θ(|x − x ′| − ε)θ(R − |x − x ′|)ψs(x)ψq(x

′).

(2.50)

Again this can be expanded in terms of local boundary fields, and the divergence in the
coefficient of ψp equals

(
I

(1)
ct

)p

q
=

∑
s∈I (1)

Bs
φ

(
Dqs

p + Dsq
p
)

2(yφ − ys)(ys + yq − yp)
[εyφ−ys Rys+yq−yp − εζpq ]. (2.51)

Here we have assumed that there is no resonance among the boundary fields, i.e. that
ys + yq �= yp for any s ∈ I (1); if there is a resonance, i.e. ys + yq = yp, then (2.51) has
to be modified in the obvious manner.

In either case, by comparison with (2.48), it is now clear that the contribution
(
I

(1)
ct

)p

q

cancels precisely the divergent part of the sum in (2.48), and similarly for the resonant case
ζpq = 0. Thus the divergent contribution only comes from the first term in (2.48) and (2.49):

Ĩ
p
q = I

p
q +

(
I

(1)
ct

)p

q
∼ C̃

p
q εζpq ,(

Ĩ
p
q

)
res = (

I
p
q

)
res +

((
I

(1)
ct

)p

q

)
res ∼ (

C̃
p
q

)
res ln(ε/ l)

as ε → 0, (2.52)

where C̃
p
q and

(
C̃

p
q

)
res are coefficients that can be obtained by taking the limits

C̃p
q = lim

ε→0
ε−ζpq ε∂ε Ĩ

p
q ,

(
C̃p

q

)
res = lim

ε→0
ε∂ε

(
Ĩ p
q

)
res. (2.53)

Using the explicit expressions (2.43), (2.46) and (2.51) we finally obtain

C̃p
q = lim

ε→0

[
i

2ζpq

∫
C(ε/R)

dη(1 − η)−(yφ+δ)/2(η − 1)ζpq/2ηyp−yq +δ−2Y (η)

+
∑
s∈I (1)

Bφ
s
(
Dqs

p + Dsq
p
)

2(ys + yq − yp)ζpq

(
R

ε

)ys+yq−yp
]

+
∑
s∈I (1)

Bφ
s
(
Dqs

p + Dsq
p
)

2(ys − yφ)(ys + yq − yp)
, (2.54)

(
C̃p

q

)
res = lim

ε→0

[
i

2

∫
C(ε/R)

dη ηyφ+δ−2(1 − η)−(yφ+δ)/2Y (η)

+
∑
s∈I (1)

Bφ
s
(
Dqs

p + Dsq
p
)

2(ys − yφ)

(
R

ε

)ys−yφ
]
. (2.55)

It is worth noting that the contours of the η-integrations in (2.54) and (2.55) can be deformed
provided the ends of the contour are held fixed and the cut is not crossed. In particular, one
can deform C(ε/R) to run infinitesimally above the cut to η = 1, and then infinitesimally
below back to the second endpoint near η = 0.

Given that the conformal blocks only have singularities at η = 1, 0,∞ with standard
asymptotics, the quantities C̃

p
q ,

(
C̃

p
q

)
res defined in (2.54) and (2.55) are finite and independent

of R. This essentially provides a proof that at order λμp the divergences can be cancelled by
local counterterms which are linear combinations of relevant operators. Together with the
well-known results at orders λ2 and μpμq we have thus shown that a generic perturbation by
relevant or marginal bulk and boundary fields is renormalizable at the quadratic order in the

11
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couplings7. It should also be possible to extend the analysis to higher orders in perturbation
theory, but we have not attempted to do so.

If the resonance condition ζpq = 0 is not satisfied the divergence of Ĩ
p
q is power like, and

in the minimal subtraction scheme there are no terms of order λμp in the beta function βp. On
the other hand, when the resonance condition is satisfied for a pair (p, q), we have a universal
term (cf (2.31) and (2.32))

βp = ypμp − (
C̃p

q

)
resλμq + · · · . (2.56)

For a marginal bulk perturbation yφ = 0, the p = q case (and only that one) is always resonant
so that we have in the notation of section 2.1

Ep

φq = (
Ep

φq

)
min ≡

{−(
C̃

p
p

)
res for p = q

0 for p �= q.
(2.57)

Moreover, assuming as in section 2.1 that all yp > 0, we have in the minimal subtraction
scheme

Dp
pr = Dp

rp = 0, Bp

φ = 0, (2.58)

and therefore by (2.16)

Ẽp

φp = −(
C̃p

p

)
res, (2.59)

where
(
C̃

p
p

)
res is given by formula (2.55) for yφ = 0 and p = q. As we proved in section 2.1,

the quantity Ẽp
q is scheme independent; we have therefore managed to obtain a description of

this universal quantity in terms of conformal blocks—this is the main result of this subsection.

2.3. Computation in a Wilsonian scheme

It is instructive to compute (2.16) also in a different, Wilsonian-type, renormalization scheme—
that of [8, 20, 21]. We will refer to this scheme as the ‘OPE scheme’ for the reason that the first
non-trivial terms in the beta functions are given by various OPE coefficients. This scheme is
often employed in conformal perturbation theory at the leading order. One of the advantages
of this scheme is that in the presence of a nearby infrared fixed point in theory space, the
corresponding coordinates are nonsingular near that fixed point. Another attractive feature is
that formulae for universal quantities, such as the dimension shift (2.16), can be obtained quite
easily in contrast to the minimal subtraction scheme. On the other hand, we will see at the
end of this section that the scheme has some pitfalls when applied to computing non-universal
quantities at higher order in perturbation theory.

In the OPE scheme the theory is also regulated by a point-splitting cut-off ε, just as in the
minimal subtraction scheme of the previous section. It is however convenient to introduce the
infrared regulator slightly differently: we introduce a cut-off whenever two coordinates xi, xj

are separated by a distance larger than L, and whenever there is a bulk operator at a distance
y > L. The dimensionless couplings are now introduced by using the UV cut-off scale itself,
which is understood as a fundamental UV scale (lattice spacing, atomic or molecular scale).
Thus we have

δS =
∑

k

ε�k−2λk

∫∫
dx dy φk(x, y) +

∑
p

εhp−1μp

∫
dx ψp(x). (2.60)

Note that one can also include in (2.60) irrelevant operators ψA with yA < 0. Their
contributions will be relatively suppressed as ε−yA but one may worry that in the perturbation

7 It should be clear from our analysis that the different technical assumptions, namely that ys �= yφ for any boundary
field ψs , and that we only have a single bulk field, are not crucial for the argument.

12
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expansion they will lead to contributions more singular than this suppression factor. We will
see that, although there is no need to introduce irrelevant operators at the leading order, they
are sometimes necessary to be taken into account at higher orders in perturbation theory.

We will confine ourselves throughout this subsection to the case of a single marginal bulk
field φ(x, y) (� = 2). In this case the terms in the perturbation expansion we are interested
in are

eδS = 1 + λ

∫∫
dx dy φ(x, y)θ

(
y − ε

2

)
+

∑
p

ε−ypμp

∫
dx ψp(x)

+
∑

p

ε−ypμpλ

∫∫
dx dy θ

(
y − ε

2

) ∫
dx ′ φ(x, y)ψp(x ′)θ(L − |x − x ′|)θ(L − y)

+
∑
pq

ε−yp−yq μpμq

∫∫
dx1 dx2 ψp(x1)ψq(x2)θ(x2 − x1 − ε)θ(L − |x1 − x2|) + · · · .

(2.61)

The cut-off variation ε∂ε eδS can be computed assuming that the coupling constants depend
on the cut-off via the couplings themselves according to

ε∂εμ
p = βp(μq, λ), (2.62)

where βp are the beta functions (2.7). In the OPE scheme we now vary eδS with respect to
ε, i.e. we compute ε∂εeδS, and demand that the variation vanishes at the leading order in ε.
This reflects the main principle of the Wilsonian renormalization group approach, namely that
the renormalized quantities must be independent of the UV scale. The resulting equations fix
order by order the coefficients of the beta functions. The linear terms in the beta functions
are always scheme independent with the coefficients given by the anomalous dimensions. It
is easy to check that at the linear order in μp the equation

ε∂ε eδS ∼
ε→0

0 (2.63)

is satisfied automatically. The equation arising at the linear order in λ fixes

Bp

φ = 1
2Bφ

p, (2.64)

where Bφ
p are the bulk-to-boundary OPE coefficients (2.4) (see [8]). At the quadratic order

in the boundary couplings one obtains the well-known expression

Dp
rs = Drs

p, (2.65)

where Drs
p are the boundary OPE coefficients (2.2). Finally, the equation at order λμq is

0 ∼
ε→0

λμq

[
−ε1−yq

2

∫∫
dx dx ′ φ

(
x,

ε

2

)
ψq(x

′)θ(L − |x − x ′|)

+
∑

p

ε−yp−yq

2
Bφ

p

∫∫
dx1 dx2 ψq(x1)ψp(x2)θ(|x1 − x2| − ε)θ(L − |x1 − x2|)

+
∑

p

ε−ypEp

φq

∫
dx ψp(x)

]
. (2.66)

The first line in the above expression came from applying ε∂ε to the cut-off function θ
(
y − ε

2

)
while the second line came from the lower-order term (2.64). The coefficients Ep

φq are formally

13
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obtained by taking correlation functions with the operator ψp inserted at infinity:

Ep

φq = (
Ep

φq

)
OPE ≡ 1

2
lim
ε→0

εyp−yq

[
ε

∫ L

−L

dx
〈
φ

(
x,

ε

2

)
ψq(0)ψp(∞)

〉

−
∑

r

ε−yr Bφ
r

∫ L

−L

dx〈ψq(0)ψr(x)ψp(∞)〉θ(|x| − ε)

]
. (2.67)

The above expression is formal because the limit may not exist. The integrals in the second
line in (2.67) can be evaluated explicitly:

1

2

∑
r

εyp−yq−yr Bφ
r

∫ L

−L

dx〈ψq(0)ψr(x)ψp(∞)〉θ(|x| − ε)

=
∑

r

Bφ
r D(qr)

p

(yq − yp + yr)

[(
L

ε

)yq−yp+yr

− 1

]
≡ H(ε/L). (2.68)

To study the convergence we rewrite expression (2.67) via conformal blocks using (2.38)(
Ep

φq

)
OPE = lim

ε→0

[
i

2

∫
C ′(ε/L)

dη ηδ−yq+yp−2(1 − η)−δ/2(η − 1)(yp−yq )/2Y (η) − H(ε/L)

]
,

(2.69)

where

C ′(ε/R) = {η = 1 − e−2iϑ , ϑ ′
∗ � ϑ � π − ϑ ′

∗}, ϑ ′
∗ = 1

2
ln

(
1 − iε/2L

1 + iε/2L

)
(2.70)

is a segment of a unit circle around η = 1 oriented clockwise. If we now evaluate Ẽp

φp of
(2.16) in the OPE scheme, using (2.69) for p = q, as well as (2.65) and (2.64), we obtain
the same expression in terms of conformal blocks as given in (2.55) and (2.59). Thus Ẽp

φp is
indeed scheme independent, as we have argued before. In terms of correlation functions, it
can now be written as

Ẽp

φp = lim
ε→0

[
ε

2

∫ L

−L

dx
〈
φ

(
x,

ε

2

)
ψp(0)ψp(∞)

〉
−

∑
r

D(pr)
p Bφ

r

yr

(
L

ε

)yr

]
. (2.71)

Writing δ = ε
2L

and using the variable η = 1 − e−2iθ in the integral (2.69), we can also obtain
another, perhaps more elegant expression for Ẽp

φp:

Ẽp

φp = lim
δ→0

[∫ π−δ

δ

dϑ〈φ(eiϑ)ψp(0)ψp(∞)〉 −
∑

r

D(pr)
p Bφ

r

yr

(
1

2δ

)yr

]
, (2.72)

where the bulk field insertion runs over a semicircle of radius 1 around the boundary insertion
ψp(0). Note that there is nothing special about the radius being 1, since

〈φ(eiϑ)ψp(0)ψp(∞)〉 = ρ2〈φ(ρ eiϑ)ψp(0)ψp(∞)〉 (2.73)

for any ρ > 0.
Let us now come back to expression (2.69) for p �= q. Substituting the asymptotic

expansion (2.47) into (2.69) we find that although the most dangerous divergences, associated
with the leading contributions of relevant primaries in (2.47), cancel out, there may be
divergences coming from terms in (2.47) associated with irrelevant fields. More precisely,
there are additional divergences in

(
Ep

φq

)
OPE from the region near η ∼ 0 whenever there is an

irrelevant primary φA(z) in the theory such that

Bφ
A �= 0 and

{
DqA

p �= 0 or DAq
p �= 0

}
and yA + yq > yp, (2.74)
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or whenever we have a relevant primary ψr(z) such that

Bφ
r �= 0 and

{
Dqr

p �= 0 or Drq
p �= 0

}
and yr + yq > yp + 1. (2.75)

In the last case, the irrelevant field causing the divergence is a descendant of the primary
ψr . From the point of view of the minimal subtraction scheme of the previous subsection,
this problem does not arise since the conditions (2.74) and (2.75) imply that there are no
divergences from the region where the bulk field approaches the boundary insertion. In fact,
the additional ε → 0 divergences in the OPE scheme come directly from the extra divergent
factors of ε included in the action (2.60).

The situation can be mended if we include in the original perturbed action (2.60) also
irrelevant fields, and introduce their beta functions by requiring that ε∂ε eδS ∼ 0 at the
subleading orders in ε. Then the function H(ε/L) is modified accordingly to include more
divergent terms that cancel out the divergences coming from the integral in (2.69). Although
this resolution looks quite natural from the Wilsonian point of view, the whole scheme becomes
quite unwieldy for practical applications whenever (2.74) or (2.75) happens. Note, however,
that these extra divergences do not appear for universal quantities like Ẽp

φp. Thus, as long as
we are only interested in these quantities we can (and will) use the technically simpler OPE
scheme. In particular, we will use this method to compute analogous quantities for pure bulk
and pure boundary perturbations in section 4.

It is worth noting that the complications related to (2.74) and (2.75) arise only in the
presence of several running coupling constants. Although beta function coefficients were
studied for some models to a very large order, see e.g. [16], such computations typically
involved only a single coupling constant.

2.4. Perturbations by boundary changing operators

Up to now we have assumed that there is a single (fundamental) boundary condition. The
whole analysis can easily be generalized to the situation where we have superpositions of
boundary conditions; in that case the set of boundary operators includes also boundary
changing operators ψab

p (x), where the two boundary conditions are labelled by a and b,

with a being the boundary condition to the left of x and b to the right. Local excitations of the
pure boundary a are denoted ψaa

p . The study of renormalization group flows involving such
operators was initiated in [24].

The OPEs of a bulk field approaching the boundary with label a, and that of two boundary
fields have the form

φi(x + iy, x − iy) =
∑

r

aB r
i (2y)hr−�i ψaa

r + · · · , (2.76)

ψab
p (x)ψbc

q (y) =
∑

r

D(abc)r
pq (y − x)hr−hp−hq ψr(y) + · · · (y > x). (2.77)

The only difference to the previous analysis is that there are now various superselection rules
that demand, for example, that products of boundary operators can only be non-zero if the
intermediate boundary conditions match, or that the boundary fields that appear in the bulk-to-
boundary OPE are always boundary-preserving fields. Taking this into account, the boundary
beta functions then have the following general form:

βab
p = yab

p μp(ab) + aBp

φ δabλ +
∑
c;rs

Dp(acb)
rs μr(ac)μs(cb) +

∑
r

Ep(ab)

φr λμr(ab) + · · · , (2.78)
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where yab
p = 1 − hab

p are anomalous dimensions, and μr(ab) are the coupling constants of the
operators ψab

r (x). The expression for the dimension shift (2.16) generalizes as

Ẽp(ab)

φp = Ep(ab)

φp −
∑

r

Dp(aab)
rp

aBr
φ

yaa
r

−
∑

r

Dp(abb)
pr

bBr
φ

ybb
r

. (2.79)

Similarly, the main results of the previous subsections (2.71) and (2.72) now become

Ẽp(ab)

φp = lim
ε→0

1

2

[
ε

∫ L

−L

dx

〈
φ

(
x,

ε

2

)
ψab

p (0)ψba
p (∞)

〉

−
∑

r

D(aab)p
rp

aB
r

φ

yaa
r

(
L

ε

)yaa
r

−
∑

r

D(abb)p
pr

bB
r

φ

ybb
r

(
L

ε

)ybb
r

]
, (2.80)

Ẽp(ab)

φp = lim
δ→0

[∫ π−δ

δ

dϑ
〈
φ(eiϑ)ψab

p (0)ψba
p (∞)

〉

−
∑

r

D(aab)p
rp

aB
r

φ

2yaa
r

(
1

2δ

)yaa
r

−
∑

r

D(abb)p
pr

bB
r

φ

2ybb
r

(
1

2δ

)ybb
r

]
. (2.81)

3. Some explicit examples

Up to now our analysis has been very general. In this section, we want to illustrate these
general results with two simple examples.

3.1. A single Neumann brane

The simplest example is the case of a single Neumann brane on a circle of radius R. The action
of this theory is simply8

S = 1

2π

∫
d2z ∂X ∂̄X. (3.1)

The bulk field that corresponds to changing the radius R is φ(z, z̄) = 2∂X(z)∂̄X(z̄), which is
an exactly marginal operator in the bulk. More specifically, we shall consider the perturbation

δS = 2λ

∫
dx dy ∂X(w)∂̄X(w̄) (3.2)

that changes the radius R as Rλ = R e−πλ so that to the first order we have δR = −πRλ.
On the Neumann brane we have open string momentum states corresponding to the vertex

operators ψ = eikX, whose conformal dimension is h = k2 with k = n
R

and n ∈ Z. We want
to study how the conformal dimension of these operators changes as we change the radius.
Thus we need to calculate9

E = lim
δ→0

[
2

∫ π−δ

δ

dϑ〈e−ikX(∞)∂X(eiϑ)∂̄X(e−iϑ) eikX(0)〉 −
∑

r

Drψ
ψ Bφ

r

yr

(
1

2δ

)yr

]
. (3.3)

On the Neumann boundary we have ∂X = ∂̄X, and the correlation function equals

2〈e−ikX(∞)∂X(eiϑ)∂̄X(e−iϑ) eikX(0)〉 = −2k2 − 1

(z − z̄)2
. (3.4)

8 Throughout this section we set α′ = 1.
9 Note that ψ is not a self-conjugate field, and we therefore have to insert the conjugate field at infinity.
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R2

R1

Θ
2

Θ

R2

Rλ
1

Θ+δΘ
2

Θ + δΘ

Figure 1. Radius perturbation on the torus: changing the radius of R1 modifies the relative
angle between the two branes, and hence the conformal dimension of the corresponding boundary
changing field.

Thus the integral is simply

2
∫ π−δ

δ

dϑ〈e−ikX(∞)∂X(eiϑ)∂̄X(e−iϑ) eikX(0)〉 = −2k2π − 1

4
cot ϑ

∣∣∣∣
ϑ=π−δ

ϑ=δ

= −2k2π +
1

2δ
+ O(δ). (3.5)

The term that is singular in δ is subtracted by the last term in (3.3). In fact, the only relevant
or marginal boundary field that is switched on is the identity field with y0 = 1 and D1ψ

ψ = 1,
and the corresponding bulk-to-boundary OPE coefficient is Bφ

1 = 1 since

2〈∂X(z)∂̄X(z̄)〉 = − 1

(z − z̄)2
= 1

4y2
. (3.6)

Thus we find that E = −2k2π in this example, which implies that

δh = 2k2πλ. (3.7)

This then agrees with the geometrical expectation since for h = k2 with k = n
R

we have

δh = −2k2 δR

R
= 2k2πλ. (3.8)

3.2. Branes at angles

A somewhat more interesting example is the configuration of two D1-branes that stretch
diagonally across a 2-torus, crossing each other at an angle (see figure 1). This brane
configuration is obviously unstable since the relative open string between the two D1-branes
is tachyonic but this will not be important in the following. (One can imagine that this is only
part of a more complicated background involving additional directions, and that the boundary
conditions of these D-branes in the other directions are chosen so that the relative open string
is not tachyonic.)

For simplicity, consider the situation where the T 2 torus is orthogonal with radii R1 and R2.
The bulk operator that changes either radius is an exactly marginal bulk operator, but it does
have an important impact on the boundary theory since the ratio of the two radii determines
the conformal dimension of the lowest string excitation between the two D1-branes. In the
following (section 3.2.2), we shall calculate the change in conformal dimension using the RG
formalism we have developed above. As we shall see, this will reproduce the standard formula
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for the conformal dimension of boundary fields on branes at angles that will be reviewed in
section 3.2.1.

3.2.1. The geometrical analysis. The torus theory is described by the action

S = 1

2π

∫
d2z ∂Xμ∂̄Xμ. (3.9)

We shall now consider changing the radius R1 by means of the perturbation

δS = 2λ

∫
dx dy ∂X1(w)∂̄X1(w̄), (3.10)

which to first order gives δR1 = −πR1λ.
The two D-branes stretch diagonally across the torus; their angle relative to the x2-axis

will be denoted by ±�/2, where � satisfies

tan
�

2
= R1

R2
. (3.11)

The open string that stretches between the two branes satisfies the + boundary condition

∂X1(z) = −cos �∂̄X1(z̄) + sin �∂̄X2(z̄),

∂X2(z) = sin �∂̄X1(z̄) + cos �∂̄X2(z̄)
(3.12)

at one end (say for z = z̄ on the positive real axis), and the − boundary condition

∂X1(z) = −cos �∂̄X1(z̄) − sin �∂̄X2(z̄),

∂X2(z) = −sin �∂̄X1(z̄) + cos �∂̄X2(z̄)
(3.13)

at the other (say for z = z̄ on the negative real axis). By going to complex variables, i.e. by
writing Z+ = 1√

2
(X1 + iX2), Z− = 1√

2
(X1 − iX2), we can write the open string fields as

Z+(z, z̄) = i

√
1

2

∑
m∈Z

(
a+

m−ν

(m − ν)zm−ν
− e−i� a−

m+ν

(m + ν)z̄m+ν

)
(3.14)

Z−(z, z̄) = i

√
1

2

∑
m∈Z

(
a−

m+ν

(m + ν)zm+ν
− ei� a+

m−ν

(m − ν)z̄m−ν

)
, (3.15)

where ν = �/π ∈ [0, 1). The modes a±
m∓ν satisfy the canonical commutation relations[

a+
m−ν, a

−
n+ν

] = (m − ν)δm,−n, (3.16)

and the Virasoro generators can be expressed in terms of them as

Lm =
∑
k∈Z

: a+
m−k−νa

−
k+ν : +

1

2
ν(1 − ν)δm,0. (3.17)

The conformal dimension of the lowest boundary changing operator ψ−+ is thus

h−+
ψ = 1

2ν(1 − ν). (3.18)

According to the analysis of [8, 25], the two D-branes will respond to the radius changing
bulk perturbation (3.10) by simply adjusting themselves infinitesimally, so that they continue
to stretch diagonally across. To first order in λ, the angle � thus changes via (3.11) as

δ� = −π sin �λ. (3.19)

With πν = � this implies that the conformal dimension of the lowest boundary changing
operator changes as

δh−+
ψ = 1

2 (2ν − 1) sin �λ + O(λ2). (3.20)

This is the result we now want to reproduce using the RG approach explained above.
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3.2.2. The RG approach. Formula (2.81) applied to the situation at hand reads

Ẽψ(−+)

φψ = lim
δ→0

[
2

∫ π−δ

δ

dϑ〈∂X1(eiϑ)∂̄X1(e−iϑ)ψ−+(0)ψ+−(∞)〉

−
∑

r

D
(−−+)ψ

rψ

−B r
φ

2y−−
r

(
1

2δ

)y−−
r

−
∑

r

D
(−++)ψ

ψr

+B
r

φ

2y++
r

(
1

2δ

)y++
r

]
, (3.21)

where the index r runs over all relevant boundary operators in the respective sectors. Since
the model at hand is Gaussian the only relevant operator induced on the boundary by φ(z, z̄)

is the identity operator in the respective + or − sector. The corresponding bulk-to-boundary
OPE coefficients can be read off from the expectation values

2〈∂X1(z)∂̄X1(z̄)〉± =
±B 1

φ

4y2
= −cos �

4y2
(3.22)

which can be computed using the mode expansions (3.14) and (3.15) for ν = 0. (The string
fields in the presence of a single boundary are of the same form as (3.14) and (3.15) but with
ν = 0.) Thus

+B
1

φ = −B 1
φ = −cos �. (3.23)

The three-point correlator in (3.21) is given by the one-point function of the radius
changing operator in the presence of the boundary conditions (3.12) and (3.13). A
straightforward computation yields

2〈∂X1(z)∂̄X1(z̄)ψ−+(0)ψ+−(∞)〉 = 2〈∂X1(z)∂̄X1(z̄)〉�
= 1

2
e−i� zν

z̄ν

z(1 − ν) + z̄ν

z(z − z̄)2
+ c.c. (3.24)

Viewed as a function on C rather than on H
+, the correlator has a logarithmic branch cut along

the negative real axis. The integral at hand can be easily evaluated:

2
∫ π−δ

δ

dϑ〈∂X1(z)∂̄X1(z̄)〉� = −
∫ π−δ

δ

dϑ
e−i�+2iνϑ

8 sin2 ϑ
(1 − ν + ν e−2iϑ) + c.c.

= cos(−� + ϑ(2ν − 1))

4 sin ϑ

∣∣∣∣
ϑ=π−δ

ϑ=δ

= −cos(−� + δ(2ν − 1))

2 sin δ
,

(3.25)

where in the last step we used � = πν. Substituting (3.25) and (3.23) into (3.21) we obtain

Ẽψ(−+)

φψ = lim
δ→0

[
−cos(−� + δ(2ν − 1))

2 sin δ
+

cos �

2δ

]
= −1

2
(2ν − 1) sin �. (3.26)

Noting that

δh−+
ψ = −δy−+

ψ = −λẼψ(−+)

φψ (3.27)

we finally get the same result as in (3.20).

4. Third-order coefficients in the pure bulk or boundary case

In section 2, we explained how to calculate higher-order coefficients in a theory with bulk and
boundary perturbations. Actually, the techniques used there can also be easily generalized to
the pure bulk or pure boundary case; this will be sketched in the following. We begin with
a discussion about which coefficients of the third-order terms in the beta functions contain
universal quantities, paralleling the discussion in section 2.1. In section 4.2, we then describe
how to obtain useful formulae for these coefficients.
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4.1. Universal quantities

In this subsection we shall only consider the pure bulk theory; the discussion for the pure
boundary case is very similar. Consider a conformal field theory perturbed by

δS =
∑

i

λi l−yi

∫
d2z φi(z, z̄), (4.1)

where as before yl = 2−�l are the anomalous dimensions, l is a renormalization length scale,
and λi are the dimensionless coupling constants. The beta functions have the general form

βl = ylλ
l +

∑
ij

Cl
ij λ

iλj +
∑
ijk

F l
ijkλ

iλjλk + O(λ4). (4.2)

We take the constants Cl
ij and F l

ijk to be totally symmetric in i, j and i, j, k, respectively.
Under a general change of the scheme the coupling constants are redefined as

λ̃l := λl +
∑
ij

cl
ij λ

iλj +
∑
ijk

f l
ijkλ

iλjλk + O(λ4), (4.3)

where the cl
ij are, without loss of generality, symmetric in i and j . The beta functions in the

new scheme are

β̃l = ylλ̃
l +

∑
ij

λ̃i λ̃j
(
Cl

ij + cl
ij (yi + yj − yl)

)
+

∑
ijk

λ̃i λ̃j λ̃k

[
F l

ijk + f l
ijk(yi + yj + yk − yl)

+
1

3

∑
m

∑
perm(i,j,k)

(
cl
miCm

jk − Cl
mic

m
jk − cl

mic
m
jk(ym + yi − yl)

)]
+ O(̃λ4). (4.4)

We observe that the second-order coefficients Cl
ij do not change under this transformation

if and only if the second-order resonance condition yi + yj = yl is satisfied. As for the
coefficients F l

ijk at the cubic powers of the couplings, it can be seen from (4.4) that the basic
requirement for F l

ijk to be universal is that it satisfies the resonance condition yi +yj +yk = yl .
However, even if the resonance condition is satisfied, the third line in (4.4) shows that the
corresponding coefficient may not be invariant under general scheme changes because of
the lower-order coefficients Cl

ij . The resulting transformations of the resonant coefficients are
parametrized by the tensors ck

ij . For an n-dimensional coupling space the dimension of the

space of coefficients F l
ijk is n2(n+1)(n+2)

6 while that of the coefficients ck
ij is n2(n+1)

2 . Depending
on how many coefficients are resonant, there may be some functions defined on these resonant
coefficients which are invariant and thus give universal quantities. For example, if all couplings
are marginal (yi = 0 for all i) then generically there must be a subspace of scheme-independent
coefficients of dimension n2(n+1)(n−1)

6 .
While in general it is hard to write out explicit expressions for universal quantities in

terms of F l
ijk and Cl

ij we can do so in the absence of second-order resonances because we can
then use a special scheme in which all Cl

ij vanish. Given a cubic resonance yi + yj + yk = yl ,
the values of the cubic coefficients F̃ l

ijk in that scheme are universal and can be expressed via
the coefficients in an arbitrary scheme as

F̃ l
ijk = F l

ijk +
1

3

∑
perm(i,j,k)

∑
m

Cm
ij Cl

mk

yl − yk − ym

. (4.5)

The scheme independence of (4.5) can be checked directly using (4.3) and (4.4).
We can also consider a situation analogous to that considered in section 2.1 when the

universal quantity gives dimension shifts under a truly marginal deformation. Let λ be a
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coupling constant corresponding to an exactly marginal operator φ(z, z̄). The beta functions
for the other operators φl(z, z̄) have the form

βl =
∑

k

(
ylδ

l
k + λCl

φk + λ2F l
φφk

)
λk +

∑
ij

(
Cl

ij + λF l
φij

)
λiλj

+
∑
ijk

F l
ijkλ

iλjλk + λ2Cl
φφ + λ3F l

φφφ + · · · . (4.6)

We can make the beta functions βi homogeneous in λi up to cubic order by a coupling constant
redefinition

λ̃i = λi +
Ci

φφ

yi

λ2 +
F i

φφφ

yi

λ3. (4.7)

This redefinition is possible because λ is truly marginal. The anomalous dimensions of the
operators φi are then given by the eigenvalues of the matrix

D
j

i (λ) ≡
(

∂β̃j

∂λ̃i

)
λ̃k=0

(4.8)

and have the form

yi[λ] = yi + λδ
(1)
i + λ2δ

(2)
i + · · · . (4.9)

A straightforward computation yields

δ
(1)
i = Ci

φi (4.10)

and

δ
(2)
i = F i

φφi − 2
∑

k

Ck
φφCi

ik

yk

+
∑
k �=i

Ck
φiCi

φk

yi − yk

. (4.11)

The coefficients Ci
φi are resonant and thus universal. One can also check that (4.11) is invariant

under an arbitrary coupling constants redefinition of the form

λ̃l = f l(λ) +
∑

k

f l
k (λ)λk +

∑
ik

f l
ik(λ)λiλk +

∑
ijk

f l
ijkλ

iλjλk, (4.12)

where f l, f l
k , f

l
ik are polynomial functions of λ.

Finally, let us mention the well-known fact that if there is a single running coupling
constant whose UV dimension is marginal, then both the quadratic and cubic terms in its beta
function are universal.

4.2. Computation of coefficients

Now that we have understood which coefficients are universal, we can ask how they can be
calculated explicitly. As in the bulk–boundary case discussed in section 2, we can either use
a minimal subtraction scheme (see section 2.2) or the OPE scheme of section 2.3. As before,
the minimal subtraction scheme is conceptually clearer since one does not need to introduce
beta functions for irrelevant fields. However, the calculation is somewhat unwieldy in this
scheme, since one has to isolate the divergences in the UV cut-off ε for finite IR cut-off L.

In the following, we shall only consider universal quantities for which the calculation in
either scheme must give the same answer. Since the OPE scheme is technically simpler, we
shall use it to determine explicit expressions for these coefficients. We have also checked
that our result agrees with what would have been obtained in the minimal subtraction scheme
(as must be the case). Moreover, for brevity we will focus on the quantity (4.5). It is
straightforward to extend our results to the dimension shifts (4.11) and to a cubic term in a
beta function of a single marginal coupling.
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4.2.1. Resonant bulk coefficients. In the OPE scheme the RG equations are determined from
the condition that the variation ε∂ε eδS vanishes in the limit ε → 0. As before we regularize
the theory by point splitting, i.e. we introduce a sharp UV cut-off ε. In addition we have an
IR cut-off L. To cubic order in the couplings we have

eδS = 1 +
∑

i

λiε−yi

∫
d2z φi(z, z̄) +

1

2!

∑
ij

λiλj ε
−yi−yj

×
∫∫

d2z1 d2z2 θ12φi(z1, z̄1)φj (z2, z̄2) +
1

3!

∑
ijk

λiλjλkε−yi−yj −yk

×
∫∫∫

d2z1 d2z2 d2z3 θ12θ23θ13φi(z1, z̄1)φj (z2, z̄2)φk(z3, z̄3) + · · · ,

where θij = θ(|zi − zj | − ε)θ(L − |zi − zj |). The variation ε∂ε of this expression can be
computed using (4.2). Setting ε∂ε eδS ∼ 0 at second order in the couplings one obtains the
well-known expression

Cm
ij = πCij

m, (4.13)

where Cij
m are the bulk OPE coefficients (2.2). At the cubic order we have the equation

0 ∼
ε→0

λiλjλk
∑

perm(i,j,k)

[
−1

2
ε−yi−yj −yk+1

∫
d2z1 d2z2 d3z3 δε

12θ13θ23φi(z1, z̄1)φj (z2, z̄2)φk(z3, z̄3)

+
∑
m

πCij
mε−ym−yk

∫
d2z1 d2z2 θ12φm(z1, z̄1)φk(z2, z̄2)

+
∑

l

F l
ijkε

−yl

∫
d2z φl(z, z̄)

]
. (4.14)

As was discussed in section 2.3 the above equation in general may still have divergences.
However, in the resonant case, i.e. if yi + yj + yk = yl no such complications arise. Then we
can write(
F l

ijk

)
res = lim

ε→0

ε

12

∫
d2z2 θ20

∑
perm(ijk)

[ ∫
d2z1 θ10δ

ε
12〈φi(z1, z̄1)φj (z2, z̄2)φk(0)φl(∞)〉

−2π
∑
m

εyi+yj −ym−1Cij
m〈φm(z2, z̄2)φk(0)φl(∞)〉

]
, (4.15)

where θ10 = θ(|z1| − ε)θ(L − |z1|), and similarly for θ20. As before, we consider spinless
fields, for which we can express the four-point correlator in terms of conformal blocks,

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)φ4(z4, z̄4)〉 =
∏
i<j

|zij |2(δ−hi−hj )Y1234(η, η̄), (4.16)

with

zij = zi − zj , δ = 1

3

4∑
i=1

hi, η = z12z34

z13z24
(4.17)

and

Y1234(η, η̄) =

⎧⎪⎨
⎪⎩

∑
m C12

mCm3
4Fm

12,34(η)F̃ m
12,34(η̄)∑

m C32
mCm1

4Fm
32,14(1 − η)F̃ m

32,14(1 − η̄)∑
m C13

mCm2
4Fm

13,24(1/η)F̃ m
13,24(1/η̄).

(4.18)
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The conformal blocks are normalized such that

Fm
12,34(η) ∼ ηhm−δ F̃ m

12,34(η̄) ∼ η̄hm−δ for η, η̄ → 0. (4.19)

Replacing the variables in the first part of the square brackets in (4.15) by an angular variable
ϕ and the cross ratio η,

z1 = z2 + ε eiϕ, z2 = ε eiϕ 1 − η

η
,

the angular variable can be integrated out by the integral over z1, and one finds(
F l

ijk

)
res = lim

ε→0

π

6

∫
d2η

∑
perm(i,j,k)

θ(1 − |η|)θ
(
|η| − ε

L

)

×
{
θ

(
1

2
− Re η

)
θ(|η|2

(
L2

ε2
− 1

)
+ 2 Re η − 1)|η|−yi−yj −2yk−4δ+4

× |1 − η|2δ+yj +yk−4Yij,kl(η, η̄) −
∑
m

Cij
mCmk

l|η|yl−ym−yk−2

}
. (4.20)

In the second term in the bracket of (4.15), we changed variables to z2 = ε/η. The function
in the last line in (4.20) can be integrated explicitly, and we obtain(
F l

ijk

)
res = lim

ε→0

∑
perm(i,j,k)

[
π

6

∫
d2η θ(1 − |η|)θ

(
|η| − ε

L

)
θ

(
1

2
− Re η

)
|η|−yi−yj −2yk−4�+4

× |1 − η|2�+yj +yk−4Yij,kl(η, η̄) − π2

3

∑
m

Cij
mCmk

l

yl − yk − ym

( ε

L

)yl−yk−ym

]

+
π2

3

∑
perm(i,j,k)

∑
m

Cij
mCmk

l

yl − yk − ym

. (4.21)

The universal quantity F̃ l
ijk defined in (4.5) is then simply given by the first two lines of (4.21).

It can be checked using the asymptotics (4.19) and the properties of conformal blocks
(4.18) that the integral (4.20) converges in the regions η ∼ ε/L → 0, |1 −η| ∼ ε/L → 0 and
|η| ∼ L/ε → ∞. One can thus safely set ε = 0 in (4.20) to obtain an integral expression(
F l

ijk

)
res = π

6

∫
d2η

∑
perm(i,j,k)

θ(1 − |η|)θ
(

1

2
− Re η

)

×
{
|η|2r+yi+yj −4|1 − η|2r+yj +yk−4Yij,kl(η, η̄) −

∑
m

Cij
mCmk

l|η|yi+yj −ym−2

}
. (4.22)

Note also that expression (4.22) is L independent. In particular, this means that the infrared
divergences that were present in individual summands in (4.21) mutually cancel each other.
This agrees with the general results of [17, 18]10.

By suitable changes of the integration variable η in the terms with permuted indices
i, j, k it is possible to write F l

ijk by means of integrals over three disjoint subsets tiling the
whole η-plane. Consider the transformation η �→ 1 − η, for which the cut-off functions
in the integral (4.22) become θ(1 − |η − 1|)θ(

Re η − 1
2

)
. The asymptotics (4.18) for Yij,kl

are such that the divergence of the transformed integrand that arises from the limit η �→ 1
is again cancelled, once we take the transformed subtractions, i.e. the second line in (4.22),

10 The perturbation expansion for Wilson coefficients proposed in [17, 18] was shown to be IR finite to all orders
under certain assumptions on the UV renormalization scheme. As we are interested in scheme-independent quantities
their result applies.

23



J. Phys. A: Math. Theor. 42 (2009) 105402 Matthias R Gaberdiel et al

into account. The other transformation is η �→ 1/η. In this case, the cut-off functions read
θ(|η| − 1)θ(|η − 1| − 1) after the transformation, and the divergence of the corresponding
integrand for η → ∞ is cancelled as well. Together, the regions carved out by the cut-off
functions for the three coordinate choices tile the whole η-plane. Using this we can recast
(4.22) as(
F l

ijk

)
res = π

3

∫
d2η[|η|2r+yi+yj −4|1 − η|2r+yj +yk−4Yij,kl(η, η̄) − Sijkl(η)], (4.23)

where

Sijkl(η) =
∑
m

Cij
mCmk

l|η|yi+yj −ym−2θ(1 − |η|)θ
(

1

2
− Re η

)

+
∑
m

Ckj
mCmi

l|1 − η|yk+yj −ym−2θ(1 − |η − 1|)θ
(

Re η − 1

2

)

+
∑
m

Cik
mCmj

l|η|−yi−yk+ym−2θ(|η| − 1)θ(|η − 1| − 1). (4.24)

In this form the integration runs over the whole η-plane. Although the subtraction function
Sijkl(η) still has a piecewise form it is expressed quite explicitly.

4.2.2. Resonant boundary coefficients. On the boundary the computation can be done in a
similar way as in the bulk. We consider a boundary perturbation of the form

δS =
∑

s

μsε−ys

∫
dx ψs(x), (4.25)

where now ys = 1 −hs . Up to the third order in the couplings the RG equations take the form

μ̇s = ysμ
s +

∑
p,q

Ds
pqμ

pμq +
∑
p,q,r

Gs
pqrμ

pμqμr + · · · . (4.26)

As before, we only introduce counterterms at the quadratic order for marginal or relevant
fields, and the corresponding coefficients are

Ds
pq = Dpq

s, (4.27)

where Dpq
s is the OPE coefficient of two boundary fields (2.3). In the resonant case where

we have ys = yp + yq + yr , the coefficient
(
Gs

pqr

)
res can be written as

(
Gs

pqr

)
res = 1

6
lim
ε→0

∑
perm(p,q,r)

{
ε

∫ L

2ε

〈ψp(0)ψq(ε)ψr(x)ψs(∞)〉

+ ε

∫ −ε

−L

〈ψp(x)ψq(0)ψr(ε)ψs(∞)〉 −
∑

t

ε−yt−yr +ys Dpq
t

∫ L

ε

〈ψt(0)ψr(x)ψs(∞)〉

−
∑

t

ε−yt−yp+ys Dqr
t

∫ −ε

−L

〈ψp(x)ψt (0)ψs(∞)〉
}
. (4.28)

By similar arguments as in the previous subsection we can find

(
Gs

pqr

)
res = 1

6

∫ 1

0
dη

∑
perm(p,q,r)

{
ηr+yp+yq−2(1 − η)r+yq +yr−2Ypq,rs(η)

−
∑

t

Dpq
tDtr

sηyp+yq−yt−1 −
∑

t

Dqr
tDpt

s(1 − η)yq+yr−yt−1

}
, (4.29)
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where

Ypq,rs(η) =
∑

t

Dpq
tDtr

sF t
pq,rs(η) =

∑
t

Dqr
tDpt

sF t
sp,qr (1 − η). (4.30)

Here the conformal blocks F t
pq,rs(η) have cuts running from −∞ to 0, and from 1 to +∞. In

addition, their asymptotic behaviour is

F t
pq,rs(η) ∼ ηht−δ (η → 0), (4.31)

where δ is defined as before, i.e. δ = 1
3 (hp + hq + hr + hs). Finally, the scheme-independent

quantity is given by

G̃s
pqr = (

Gs
pqr

)
res +

1

6

∑
perm(p,q,r)

∑
t

Dpq
t
(
Dtr

s + Drt
s
)

ys − yr − yt

. (4.32)

In the case where several irreducible boundary conditions are involved, one has to keep
track of their labels, and bear in mind the superselection rules, in particular the order of
operators. This leads to additional splittings and recombinations of the integrals over four-
point functions and subtractions. Apart from this technicality, it is however straightforward
to include the boundary labels. We have refrained from writing them explicitly to keep the
formulae simpler.

5. Conclusions

In this paper we have studied conformal perturbation theory beyond the leading order. We
have shown that, at least up to quadratic order, the combined bulk–boundary perturbation
problem is renormalizable, using the minimal subtraction scheme. We also discussed the
more commonly used ‘Wilsonian’ OPE scheme, and found it to have some shortcomings
at higher order in perturbation theory. We identified systematically the universal (scheme-
independent) quantities, and gave explicit formulae for them at third order in terms of integrals
of conformal four-point functions. Finally, we explained how essentially the same analysis
works for the pure bulk and pure boundary case. It seems plausible that similar techniques
should allow one to prove renormalizability at arbitrary order in perturbation theory, but we
have not attempted to do so.

Our work was originally motivated by the question of how the dependence of the conformal
dimension of a boundary changing field upon a bulk modulus can be understood from the
world-sheet perspective. Our considerations demonstrate that this effect is captured by a
certain universal quadratic RG coefficient, for which we gave an explicit formula. This
result should also have interesting applications in other contexts; in particular, it provides a
world-sheet method to study the stability of brane setups under arbitrary bulk deformations.
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